[ TutPig.com ] Practical Multi-Armed Bandit Algorithms in Python
Download More Courses Visit and Support Us -->> https://TutPig.com
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English + srt | Duration: 13 lectures (3h 45m) | Size: 1.15 GB
Acquire skills to build digital AI agents capable of adaptively making critical business decisions under uncertainties.
What you'll learn:
Understanding and being able to identify Multi-Armed Bandit problems.
Modelling real business problems as MAB and implementing digital AI agents to automate them.
Understanding the challenge of RL regarding the exploration-exploitation dilema.
Practical implementation of the various algorithmic strategies for balancing between exploration and exploitation.
Python implementation of the Epsilon-greedy strategy.
Python implementation of the Softmax Exploration strategy.
Python implementation of the Optimistic Initialization strategy.
Python implementation of the Upper Confidence Bounds (UCB) strategy.
Understand the challenges of RL in terms of the design of reward functions and sample efficiency.
Estimation of action values through incremental sampling.
Requirements
Be able to understand basic OOP programs in Python.
Have basic Numpy and Matplotlib knowledge.
Basic algebra skills. If you know how to add, subtract, multiply, and divide numbers, you are good to go.
Description
This course is your perfect entry point into the exciting field of Reinforcement Learning where digital Artificial Intelligence agents are built to automatically learn how to make sequential decisions through trial-and-error. Specifically, this course focuses on the Multi-Armed Bandit problems and the practical hands-on implementation of various algorithmic strategies for balancing between exploration and exploitation. Whenever you desire to consistently make the best choice out of a limited number of options over time, you are dealing with a Multi-Armed Bandit problem and this course teaches you every detail you need to know to be able to build realistic business agents to handle such situations.
With very concise explanations, this course teaches you how to confidently translate seemingly scary mathematical formulas into Python code painlessly. We understand that not many of us are technically adept in the subject of mathematics so this course intentionally stays away from maths unless it is necessary. And even when it becomes necessary to talk about mathematics, the approach taken in this course is such that anyone with basic algebra skills can understand and most importantly easily translate the maths into code and build useful intuitions in the process.
Use Winrar to Extract. And use a shorter path when extracting, such as C: drive
ALSO ANOTHER TIP: You Can Easily Navigate Using Winrar and Rename the Too Long File/ Folder Name if Needed While You Cannot in Default Windows Explorer. You are Welcome ! :)
Download More Courses Visit and Support Us -->> https://TutPig.com
Get More Tutorials and Support Us -->> https://TutSala.com
We upload these learning materials for the people from all over the world, who have the talent and motivation to sharpen their skills/ knowledge but do not have the financial support to afford the materials. If you like this content and if you are truly in a position that you can actually buy the materials, then Please, we repeat, Please, Support Authors. They Deserve it! Because always remember, without "Them", you and we won't be here having this conversation. Think about it! Peace...
|
udp://tracker.torrent.eu.org:451/announce udp://tracker.tiny-vps.com:6969/announce http://tracker.foreverpirates.co:80/announce udp://tracker.cyberia.is:6969/announce udp://exodus.desync.com:6969/announce udp://explodie.org:6969/announce udp://tracker.opentrackr.org:1337/announce udp://9.rarbg.to:2780/announce udp://tracker.internetwarriors.net:1337/announce udp://ipv4.tracker.harry.lu:80/announce udp://open.stealth.si:80/announce udp://9.rarbg.to:2900/announce udp://9.rarbg.me:2720/announce udp://opentor.org:2710/announce |