A Foundation For Machine Learning and Data Science
https://DevCourseWeb.com
Published 1/2024 Created by Balasubramanian Chandran MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch Genre: eLearning | Language: English | Duration: 30 Lectures ( 6h 47m ) | Size: 2.79 GB
A solid foundational course for ML and Data Science with Python, Linear Algebra, Statistics, Probability, and OOPs.
What you'll learn: A solid foundation for Machine Learning and Data Science Black-box ML concepts A high-level understanding of the 11 stages involved in developing and implementing ML projects Python for Machine Learning and Data Science Python data types and structures, NumPy data structures, and Pandas data structures Pandas data indexing and selection, Operating on Pandas data, Handling missing data, Hierarchical indexing/ multi-indexing Combining datasets, aggregation, and grouping Working with strings, list-set-dictionary comprehensions, functions, unpacking sequences, and so on How to use NumPy for numerical computing, vectorization, broadcasting, data transformation, and so on How to use Pandas for data analysis and data manipulation Jupyter Notebook commands and markdown codes Linear algebra including the types of linear regression problems and the types of classification problems, and so on Statistics including Why do we need to learn statistics? What are statistical models? What are the different types of statistics available? What are mean, median, mode, quartiles, and percentiles? What are range, variance, and standard deviation? What are skewness and kurtosis? What are the different types of variables we will be dealing with? How statistics is used in various stages of machine learning? and so on Probability theory including the language of Probability theory, Probability Tree, Types of probability, why we need to learn Probability? and so on Object-Oriented Programming An overview of important libraries used in ML and DS for data processing, data analysis, data manipulation, visualization, and other supporting libraries And, much more
Requirements: Fundamentals of computer science and programming High school-level basic mathematics |
[ DevCourseWeb.com ] Udemy - A Foundation For Machine Learning and Data Science
-
Get Bonus Downloads Here.url (0.2 KB)
~Get Your Files Here !
1. Welcome Message
-
1. Welcome Message.mp4 (29.6 MB)
10. OOPs – An Overview
-
1. OOPs – An Overview.mp4 (61.8 MB)
11. Important Libraries – An Overview
-
1. Important Libraries – An Overview.mp4 (43.8 MB)
12. Congratulatory and Closing Note
-
1. Congratulatory and Closing Note.mp4 (24.7 MB)
2. Course Contents
-
1. Course Contents.mp4 (21.3 MB)
3. Introduction to Machine Learning
-
1. Introduction to Machine Learning.mp4 (84.3 MB)
4. Anaconda – An Overview & Installation
-
1. Anaconda – An Overview & Installation.mp4 (11.4 MB)
5. JupyterLab – An Overview
-
1. JupyterLab – An Overview.mp4 (20.1 MB)
-
2. [Hands on] JupyterLab Overview (Notebook Commands, Markdown Codes).mp4 (53.1 MB)
-
2.1 Jupyter_Notebook_Hands_on.ipynb (13.7 KB)
-
2.2 LaTeX_Symbols.png (43.1 KB)
6. Python Overview
-
1. Python Data Types & Structures, NumPy Data Structures.mp4 (121.1 MB)
-
10. [Hands on 5] Handling missing data.mp4 (54.2 MB)
-
10.1 Python_Overview_Hands_on_5.ipynb (10.6 KB)
-
11. Hierarchical Indexing Multi-Indexing.mp4 (27.7 MB)
-
12. [Hands on 6] Hierarchical Indexing Multi-Indexing.mp4 (187.6 MB)
-
12.1 Python_Overview_Hands_on_6.ipynb (22.3 KB)
-
13. Combining Datasets.mp4 (29.2 MB)
-
14. [Hands on 7] Combining Datasets.mp4 (273.7 MB)
-
14.1 Python_Overview_Hands_on_7.ipynb (80.3 KB)
-
15. Aggregation and Grouping.mp4 (42.8 MB)
-
16. [Hands on 8] Aggregation and Grouping.mp4 (204.0 MB)
-
16.1 Python_Overview_Hands_on_8.ipynb (21.0 KB)
-
17. Strings, List-Set-Dictionary Comprehensions, Functions, Unpacking Sequence.mp4 (83.5 MB)
-
18. [Hands on 9] Strings, List-Set-Dictionary Comp., Functions, Unpacking Seqence.mp4 (192.6 MB)
-
18.1 Python_Overview_Hands_on_9.ipynb (27.5 KB)
-
2. [Hands on 1] Python Data Types & Structures, NumPy Data Structures.mp4 (546.8 MB)
-
2.1 Python_Overview_Hands_on_1.ipynb (60.4 KB)
-
3. Pandas Data Structures.mp4 (24.3 MB)
-
4. [Hands on 2] Pandas Data Structures.mp4 (181.6 MB)
-
4.1 olympics.csv (8.2 KB)
-
4.2 Python_Overview_Hands_on_2.ipynb (26.0 KB)
-
5. Pandas Data Indexing and Selection.mp4 (31.9 MB)
-
6. [Hands on 3] Pandas Data Indexing and Selection.mp4 (75.1 MB)
-
6.1 Python_Overview_Hands_on_3.ipynb (14.4 KB)
-
7. Pandas Operating on Data.mp4 (9.8 MB)
-
8. [Hands on 4] Pandas Operating on Data.mp4 (69.6 MB)
-
8.1 Python_Overview_Hands_on_4.ipynb (21.3 KB)
-
9. Handling missing data.mp4 (18.4 MB)
7. Linear Algebra – An Overview
-
1. Linear Algebra – An Overview.mp4 (93.2 MB)
8. Statistics – An Overview
-
1. Statistics – An Overview.mp4 (159.1 MB)
9. Probability – An Overview
-
1. Probability – An Overview.mp4 (91.2 MB)
-
Bonus Resources.txt (0.4 KB)
files
|
udp://tracker.torrent.eu.org:451/announce udp://tracker.tiny-vps.com:6969/announce http://tracker.foreverpirates.co:80/announce udp://tracker.cyberia.is:6969/announce udp://exodus.desync.com:6969/announce udp://explodie.org:6969/announce udp://tracker.opentrackr.org:1337/announce udp://9.rarbg.to:2780/announce udp://tracker.internetwarriors.net:1337/announce udp://ipv4.tracker.harry.lu:80/announce udp://open.stealth.si:80/announce udp://9.rarbg.to:2900/announce udp://9.rarbg.me:2720/announce udp://opentor.org:2710/announce |