torrents rarbg
Catalog Top 10

RARBG
Home
Movies
XXX
TV Shows
Games
Music
Anime
Apps
Doc
Other
Non XXX

[UDEMY] Feature Selection for Machine Learning - [FTU]

Torrent: [UDEMY] Feature Selection for Machine Learning - [FTU]
Description:



From beginner to advanced

Created by : Soledad Galli
Last updated : 11/2018
Language : English
Subtitle : Included
Torrent Contains : 92 Files, 12 Folders
Course Source : https://www.udemy.com/feature-selection-for-machine-learning/

What you'll learn

• Understand different methods of feature selection
• Implement different methods of feature selection
• Reduce feature space in a dataset
• Build simpler, faster and more reliable machine learning models
• Analyse and understand the selected features

Requirements

• A Python installation
• Jupyter notebook installation
• Python coding skills
• Some experience with Numpy and Pandas
• Familiarity with Machine Learning algorithms
• Familiarity with scikit-learn

Description

Learn how to select features and build simpler, faster and more reliable machine learning models.

This is the most comprehensive, yet easy to follow, course for feature selection available online. Throughout this course you will learn a variety of techniques used worldwide for variable selection, gathered from data competition websites and white papers, blogs and forums, and from the instructor’s experience as a Data Scientist.

You will have at your fingertips, altogether in one place, multiple methods that you can apply to select features from your data set.

The course starts describing simple and fast methods to quickly screen the data set and remove redundant and irrelevant features. Then it describes more complex techniques that select variables taking into account variable interaction, the feature importance and its interaction with the machine learning algorithm. Finally, it describes specific techniques used in data competitions and the industry.

The lectures include an explanation of the feature selection technique, the rationale to use it, and the advantages and limitations of the procedure. It also includes full code that you can take home and apply to your own data sets.

This course is therefore suitable for complete beginners in data science looking to learn how to go about to select features from a data set, as well as for intermediate and even advanced data scientists seeking to level up their skills.

With more than 50 lectures and 8 hours of video this comprehensive course covers every aspect of variable selection. Throughout the course you will use python as your main language.

So what are you waiting for? Enrol today, learn how to select variables for machine learning, and build simpler, faster and more reliable learning models.

Who is the target audience?

• Beginner Data Scientists who want to understand how to select variables for machine learning
• Intermediate Data Scientists who want to level up their experience in feature selection for machine learning
• Advanced Data Scientists who want to discover alternative methods for feature selection
• Software engineers and academics switching careers into data science
• Software engineers and academics stepping into data science
• Data analysts who want to level up their skills in data science.

For More Udemy Free Courses >>> http://www.freetutorials.eu
For more Lynda and other Courses >>> https://www.freecoursesonline.me/
Our Forum for discussion >>> https://discuss.freetutorials.eu/




Downloads: 57
Category: Other/Tutorials
Size: 397.1 MB
Show Files »
files
Added: 2018-11-25 21:05:10
Language: English
Peers: Seeders : 9 , Leechers : 10
Release name: [UDEMY] Feature Selection for Machine Learning - [FTU]
Trackers:

https://tracker.fastdownload.xyz:443/announce

udp://tw.opentracker.ga:36920/announce

udp://tracker.tiny-vps.com:6969/announce

https://seeders-paradise.org:443/announce

udp://open.stealth.si:80/announce

udp://hk1.opentracker.ga:6969/announce

udp://open.stealth.si:80/announce

https://opentracker.xyz:443/announce

https://t.quic.ws:443/announce

https://tracker.fastdownload.xyz:443/announce

udp://tracker.opentrackr.org:1337/announce

udp://ipv4.tracker.harry.lu:80/announce

udp://tracker.coppersurfer.tk:6969/announce

udp://zephir.monocul.us:6969/announce

udp://open.demonii.si:1337/announce





By using this site you agree to and accept our user agreement. If you havent read the user agreement please do so here